mments leading to utilization decisions probably is under-
valued compared with the monetary value of reimburse-
ment for technical procedures. Enhanced cognitive skill
and improved patient care are desirable outcomes of
effective technology assessments. (Daniel L. Kent,
M.D., and Eric B. Larson, M.D., M.P.H., Veterans
Administration Medical Center and Division of General
Internal Medicine, University of Washington; Seattle,
Washington)

References
1. Kosecoff J, Kanouse DE, Rogers WH, McCloskey LW, Winslow
CM, Brook RH. Effects of the National Institutes of Health Consensus
Development Conference on physician practice. JAMA. 1987;258:2708-
13.
2. Institute of Medicine. Assessing Medical Technologies. Wash-
3. Institute of Medicine, Council on Health Care Technolo-
gies. Medical Technology Assessments Directory. 1988; [In press].
4. Stason WB, Localio AR. Magnetic Resonance Imaging: Clinical Ef-

cacy, Costs and Policy Considerations. Health Benefits Management
Division, Blue Cross and Blue Shield Association; 1985.
5. Steinberg EP, Cohen AB. Health Technology Case Study 27: Nu-
clear Magnetic Resonance Imaging Technology: A Clinical Industrial,
6. Feigenbaum E. Public Health Service Assessment: Magnetic Re-
Assessment Reports; 1985. DHHS no. 13.
7. Revicki D et al. Nuclear Magnetic Resonance Imaging: Informa-
tion Synthesis on Clinical Applications and Cost Considerations. Wash-
ton, D.C.: Health Services Research and Development Service, Veterans
Administration; 1986.
8. Institute of Medicine, Assessing Medical Technologies, Wash-
9. Schwartz JS, Ball JR, Moser RH. Safety, efficacy and effectiveness
11. Sheps SB, Schecter MT. The assessment of diagnostic tests: a survey
12. Panzer RJ, Kudo JK, Hindmarsh T. A methodological assessment of
studies comparing magnetic resonance imaging and computed tomogra-
13. Kent DL, Larson EB. Magnetic resonance imaging of the brain and
14. Ransohoff DF, Feinstein AR. Problems of spectrum and bias in
evaluating the efficacy of diagnostic tests. N Engl J Med. 1978;299:926-
30.
15. Kent DL, Larson EB. Will history repeat itself? The declining sensi-
16. Licht RJ, Pullemer DB. Summing Up: The Science of Reviewing
17. Medicare Carriers Manual: Coverage Issues in Diagnostic Services 50-
13; and Medicare Coverage Manual: Reasonable Charges 5246-2. Wash-
ington, D.C.; 1985. DHHS.
comparison of MR imaging and CT in neuroradiology. Radiology.
1986;60:551-5.
lesions at presentation in patients with optic neuritis. J Neurol Neu-
21. Kucharczyk W, Davis DO, Kelly WM, Sze G, Nomar D, New-
ton TH. Pituitary adenomas: high-resolution MR imaging at 1.5T. Ra-
diology. 1986;161:761-3.
22. Modic MT, Masaryk TJ, Bumpiery F, Goodmaste M, Bell G.
Lumbar herniated disk disease and canal stenosis: prospective evalua-
23. Modic MT, Masaryk TJ, Mulopulos GP, Bundscheur C, Hans JS,
Bohman H. Cervical radiculopathy: prospective evaluation with sur-
face coil MR imaging, CT with metrizamide, and metrizamide myelog-
24. Fineberg HV, Bauman R, Sosman M. Computerized cranial tomog-
raphy: effect on diagnostic and therapeutic plans. JAMA. 1977;238:224-
7.
25. Schwartz JS. Evaluating diagnostic tests: what is done—what needs to
26. Lusted LB. American College of Radiology study of the efficacy of
diagnostic radiologic procedures: final report on diagnostic efficacy.
27. Sackett DL. Rules of evidence and clinical recommendations of the
28. American College of Radiology, Commission on Magnetic
Resonance, Clinical Application of Magnetic Resonance Imaging.
29. Clinical Efficacy Assessment Project. CEAP Recommendations
30. Jonas S. A proposed method for using a reimbursement moratorium to
encourage recruitment for a randomized study of carotid endarterecto-
© 1988 American College of Physicians

The 1988 National Resident Matching Program

The attractiveness of careers in internal medicine to senior medical students from schools in the United States has been diminishing (1). The results of the 1988 National Resident Matching Program show a further decrease in the filling of categorical career positions. Participating categorical programs increased to 417 from 404, but the number of positions offered decreased by 144 to 5197, compared with those offered in 1987. The number of US senior medical students matched decreased by 110 to 3316, the lowest number matched since 1978. Since 1985, US senior medical students matched in categorical programs in internal medicine have decreased by 14.6 percentage points whereas the number of students active in the match has decreased only 2.4 percentage points. Matched US senior medical students who entered categorical programs decreased to 25% in 1988, 0.5 percentage points fewer than in 1987 and 6 percentage points fewer than in 1978. Positions matched by other applicants, mainly graduates of foreign schools, increased by 127 to a record 1098. The percentage filling of the fewer positions by US senior medical students remained at 64%, but the total filling by all applicants increased 3 percentage points to 85%.

In contrast, primary care programs increased from 42 to 47, positions offered in those programs from 237 to 273, US senior medical students matched increased from 173 to 209, and filling increased from 72% to 77%, thus continuing the trend of the past 10 years (1). Thirty-one other matched applicants brought the total filling to 88%, 6 percentage points greater than in 1987.

Medicine-pediatric programs increased from 70 to 76 and positions offered from 206 to 232, but US senior medical students matched decreased from 151 to 143 with a consequent decrease in filling from 73% to 62%. Only 12 other applicants matched and the total filling was 69% compared with 81% in 1987.

One year, preliminary programs increased 11 percentage points from 226 to 250 and positions offered in them from 1292 to 1570, an increase of 21.5 percentage points. Matched US senior medical students increased from 1031 to 1178, but filling dropped from 79% to 75%. Only 67

Editors 761
other candidates entered these programs and total filling decreased to 79% from 82% in 1987. Most of those matched will go into other specialties.

The total of positions offered in 1988 was 7272, 196 more than in 1987. Of the 13,496 US senior medical students who matched, 4846 (35.9%) entered these positions to fill 66.6%. In 1987, 13,596 graduates matched, 4781 (35.2%) of them entered internal medicine positions and filled 67.6% of the total positions offered.

Although the total US senior medical students who entered internal medicine increased in 1988, the number of positions increased more with a consequent decrease in filling of one percentage point. The increment in US senior medical students was entirely in preliminary and primary care tracks. Students in categorical programs decreased, despite the reduction of positions. Thus, in 1988 US senior medical students in categorical internal medicine positions—the numerator of the filling calculation—continued to decrease, while the number of positions—the denominator of the filling equation—continued to increase. The success of primary care programs in attracting senior medical students deserves attention. (John S. Graettinger, M.D., National Resident Matching Program, Evanston, Illinois)

Reference